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Abstract

The purpose of this paper is to describe a method for simulation of recently introduced


uid stochastic Petri nets. Since such nets result in rather complex set of partial di�erential

equations, numerical solution becomes a formidable task. Because of a mixed, discrete and

continuous state space, simulative solution also poses some interesting challenges, which are

addressed in the paper.
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1 Introduction

Stochastic Petri nets provide a convenient and concise method of describing discrete-event

dynamic systems [1, 4, 6, 12, 15]. One of the di�culties encountered while using stochastic

Petri nets is that the underlying reachability graph tends to be very large in practical prob-

lems. Drawing a parallel with 
uid 
ow approximations in performance analysis of queueing

systems [3, 7, 11], SPNs have been extended to include 
uid (or continuous) places where


uid can be used to approximate a large number of discrete tokens. Armed with such Fluid

Stochastic Petri nets (FSPNs), we can also model physical systems that contain continuous


uid-like quantities which are controlled by discrete logic.

Fluid stochastic Petri nets were introduced by Trivedi and Kulkarni in [14]. The original

model was considerably enhanced in [9]. The purpose of this paper is twofold: �rst we

further extend the formalism in [9] to make it more useful and, second, we explore the use

of simulation as a solution method for FSPNs. The extensions to the FSPN formalism we

propose include:

� Fluid impulses associated with both immediate and timed transition �rings.

� Guards on immediate transitions, dependent on 
uid levels, not just on the discrete

marking.

In the process of using simulation as a solution method, several innovations are needed.

In this direction, the contributions of this paper include:

� Generation of random deviates based on a non-homogeneous Poisson process.

� Interleaving of ODE solution for 
uid places with simulation of discrete events in the

FSPN.

� De�nition of restrictions under which one can integrate the change of 
uid levels using

built-in closed-from results, such as decoupled behavior and special classes of functions

for the 
uid rates.

After introducing the FSPN model in the next section, we describe the method of sim-

ulation for the most general case in Section 3. The simplest case of uncoupled behavior of

di�erent 
uid places is taken up in Section 4 while two other cases are discussed in Sections

5 and 6, respectively. Examples are provided in Section 7.
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2 Fluid stochastic Petri nets

Sets are denoted by upper case calligraphic letters. In particular, N , R, and R0 indicate

the natural, real, and nonnegative numbers, respectively.

For simplicity, we only address exponentially distributed �ring times. Generally dis-

tributed �ring times are clearly useful, and, in connection with discrete-event simulation,

might not add much complexity to the solution. However, the interruption policies (what

happens to the remaining �ring time of transitions when one of them �res) can require very

complex de�nitions in full generality [5, 13]. This is not the case with the exponential distri-

bution, due to its memoryless property. If we assume that the �ring rate of each transition,

if marking-dependent, is reevaluated in each marking where it is enabled, the time elapsed

since the transition �rst became enabled does not a�ect the future evolution of the FSPN.

A 
uid stochastic Petri net (FSPN) is a tuple
�
PD

;PC
;T T

;T I
; a; f; g; �; w; b;m

0
;x

0
�
,

where:

� PD = fp1; : : : ; pjPDjg and P
C = fq1; : : : ; qjPCjg are two disjoint and �nite sets of places.

Let P = PD [ PC. A (discrete) place p 2 PD is drawn with a single circle and can

contain a number of tokens mp 2 N . A (continuous) place q 2 PC is drawn with

two concentric circles and can contain a level of 
uid xq 2 R0. The marking, or

state, of the FSPN is given by a pair of vectors describing the contents of each place,

(m;x) 2 Ŝ = N jPDj � R0
jPCj. We call Ŝ the \potential state space", as opposed to

the \actual state space" S � Ŝ, the set of markings actually reachable during the

evolution of the FSPN. The marking (m;x) evolves in time, which we indicate by � ,

so, formally, we can think of it as a stochastic process f(m(� );x(� )) ; � � 0g.

� T T = ft1; : : : ; tjT T jg and T
I = fu1; : : : ; ujT I jg are two disjoint and �nite sets of transi-

tions. Let T = T T [ T I . A (timed) transition t 2 T T is drawn as a rectangle and has

an exponentially distributed �ring time. An (immediate) transition i 2 T I is drawn

as a thin bar and has a constant zero �ring time.

� a :
�
(PD � T ) [ (T � PD)

�
� Ŝ ! N and a :

�
(PC � T ) [ (T �PC)

�
� Ŝ ! R0

describe the marking-dependent cardinality (for discrete places) or the 
uid impulse

(for continuous places) of the input and output arcs connecting transitions and places.

We use the same symbol for both, and we draw them an thin arcs with an arrowhead

on their destination, since the type of place eliminates any possibility of confusion.

The function describing a is written on the arc, the default is the constant one.
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� f :
�
(PC � T ) [ (T � PC)

�
� Ŝ ! R0 describes the marking-dependent 
uid rate of

the input and output arcs connecting transitions and continuous places. These 
uid

arcs are drawn with a thick line, and an arrowhead on their destination. Also in this

case the function is written on the arc and the default is the constant one.

� g : T � Ŝ ! f0; 1g describes the marking-dependent guard of each transition.

� � : T T � Ŝ ! R0 and w : T I � Ŝ ! R0 describe the marking-dependent �ring rates

and weights of each transition.

� b : PC �N jPDj ! R0 [ f1g describe the 
uid bounds on each continuous place. This

bound has no e�ect when it is set to in�nity. Note that b depends only on the discrete

part of the state space, N jPDj, not on Ŝ, to avoid the possibility of circular de�nitions.

� (m0
;x

0) 2 Ŝ is the initial marking. Graphically, it is represented by writing the value

of m0
p, or x

0
q, inside the corresponding place. A missing value indicates zero. For

discrete places, it is also common to draw m
0
p tokens inside the place, if this number

is small.

The meaning of these quantities is given by the enabling and �ring rules. We say that a

transition t 2 T has concession in marking (m;x) i�

8p 2 PD
; ap;t(m;x) �mp and gt(m;x) = 1:

If any immediate transition has concession in (m;x), it is said to be enabled and the marking

is said to be vanishing. Otherwise, the marking is said to be tangible and any timed transition

with concession is enabled in it. In other words, a timed transition is not enabled in a

vanishing marking even if it has concession.

Some de�nitions of SPNs allow one to disable a transition t with concession in a marking

by specifying a zero rate or weight for it, or by introducing inhibitor arcs, drawn with a circle

instead of an arrowhead. Since we can represent these behaviors by an appropriate de�nition

of input arc cardinalities or of guards, we assume, without loss of generality, that rates and

weights are positive for an enabled transition. Inhibitor arcs can then be considered merely

as a shorthandx.

xIf, in (m;x), an inhibitor arc from p 2 PD (q 2 PC) to t 2 T has cardinality c 2 N (c 2 R0), t is

disabled if c �mp (c � xq). The same behavior can be modeled by ensuring that the guard gt evaluates to

0 in (m;x).
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Let E(m;x) denote the set of enabled transitions in marking (m;x). Enabled transitions

change the marking in two ways. First, a transition t 2 T enabled in marking (m;x) can �re

after a random amount of time having distribution � Expo(�t(m;x)), and yield a (possibly)

new marking (m0
;x

0). We then write (m;x)
t
+(m0

;x
0), where

8p 2 PD
; m

0
p = mp+ at;p(m;x)� ap;t(m;x)

8q 2 PC
; x

0
q = minfbq(m

0);maxf0;xq + at;q(m;x)� aq;t(m;x)gg:

Second, 
uid 
ows continuously through the arcs f of enabled transitions connected to

continuous places. The potential rate of change of 
uid level for the continuous place q 2 PC

in marking (m;x) is

�
pot
q (m;x) =

X
t2E(m;x)

ft;q(m;x)� fq;t(m;x):

However, the 
uid level can never become negative or exceed the bound bq(m), so the (actual)

rate of change over time, � , while in marking (m;x), is

�q(m;x) =
dxq

d�
=

8>>>>>><
>>>>>>:

0 if bq(m) = 0 or

if xq = bq(m) and �
pot
q (m;x) > 0 or

if xq = 0 and �
pot
q (m;x) < 0

�
pot
q (m;x) otherwise

: (1)

The stochastic evolution of the FSPN in a tangible marking is governed by a race [2]:

the timed transition t with the shortest �ring time is the one chosen to �re next, unless

it becomes disabled by some 
uid levels reaching particular values that cause t to become

disabled prior to its �ring. In a vanishing marking, instead, the weights are used to decide

which transition should �re: an immediate transition u enabled in marking (m;x) �res with

probability
wu(m;x)X

u02E(m;x)

wu0(m;x)
: (2)

3 General case

The FSPN de�nition we just gave is very powerful, but it allows one to describe models

whose solution can be quite di�cult, even with discrete-event simulation. Indeed, it can be

used to de�ne FSPNs whose behavior is \unstable," as in the FSPNs of Fig. 1. In the model
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(xq = 0)
q

u1 u2

(xq > 0)
q

t1 t2

(xq = 0) (xq > 0)

F1 F2
q

t1 t2

Figure 1: FSPNs exhibiting unstable behaviors.

on the left, immediate transitions u1 and u2 alternatively put and remove a unit impulse

instantaneously. With few exceptions [8], such a behavior has been considered a modeling

error in the literature on discrete-state models. The instability of the model in the middle

is instead exclusive to models with a states having a continuous component, such as our

FSPNs. When x
0
q = 0, timed transition t1 is enabled and timed transition t2 is disabled.

However, as soon as the 
uid arc starts adding 
uid to q, the situation is reversed, t1 becomes

disabled, while t2 becomes enabled and starts emptying q. It could be argued that, in such a

situation, q will always be empty, but any model where an in�nite number of events occurs in

a �nite time (e.g., transitions t1 and t2 become enabled an in�nite number of times) cannot

be managed by conventional discrete-event simulation techniques. Hence, we will consider

such behaviors illegal.

The model on the right could be also considered unstable if F2 > F1. Both t1 and t2 are

always enabled, hence there is a continuous 
ow into q at rate F1 due to t1. However, the

outgoing 
ow due to t2 cannot be F2. Our de�nition simply states that �q is 0 in this case,

implying that the outgoing 
ow is e�ectively reduced to be F1, instead of F2, or, in other

words, the arc from q to t2 can be thought to have e�ect only a fraction F1=F2 of the time.

This type of behavior, however, can be easily managed by considering all the 
ows incident

to a continuous place, so we do not regard it as a true instability.

We now describe how to study a model with no unstable behaviors. Assume that we

have just entered tangible marking (m;x). If there is any enabled transition, each continuos

component xq might vary in a very general way over time. Applying Eq. 1 to each q 2 PC, we

obtain a system of ordinary di�erential equations subject to the initial condition x(0) = x.

We can then consider two cases:

� In the simpler case, the cardinality of the arcs connected to discrete places and the

guards do not depend on x. Even so, the �ring times behave as a nonhomogeneous
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Poisson process (NHPP) whose rate depends on the continuous marking, and so some

care is required in sampling the �ring instants. We assume that the �ring rate of

each transition t can be bounded from above by �
�
t (m), given our knowledge of its

dependence on the 
uid marking. That is, when the discrete marking is m, the rate of

t satis�es �t(m;x) � �
�
t (m), for any value of x that might be reached in conjunction

with m. We can therefore sample from the NHPP using the technique of \thinning"

[10], where we sample \potential �ring instants" in accordance with a homogeneous

Poisson arrival process with rate

��(m) =
X

t2E(m;x)

�
�
t (m):

From this process, we can de�ne a sequence of increasing time instants (�1; �2; : : :).

Starting from i = 1, we \accept" �i, that is, we declare that a �ring occurred at time

�i, with probability �(m;x(�i))=�
�(m), where

�(m;x(�i)) =
X

t2E(m;x)

�t(m;x(�i)):

In other words, we use the actual �ring rates at time �i as a weight, to determine

whether the event corresponds to a true �ring or not. This requires us to solve for

the value of x(�1), by integrating the system of ordinary di�erential equations. If �1 is

accepted, we stop. Otherwise, we integrate until �2, compute x(�2), and decide whether

to accept �2 or not, and so on. Eventually, this process stops at some step i, giving us

the actual �ring time � f = �i.

For example, Fig. 2 illustrates the case where four transitions are enbaled in (m;x), t1,

t2, t3, and t4. The sequence of numbered arrows shows the random deviates generated,

in order. First, we generate �1 according to the distribution Expo(��(m)). Then we

generate a random deviate � Unif(0;��(m)). In the �gure, this happens to fall in

the interval corresponding to the \do not accept" case. Thus, we need to generate

another potential �ring time by sampling the distribution Expo(��(m)) again and

summing the sampled value to �1, obtaining �2. We also need another random deviate

� Unif(0;��(m)), which also, in the �gure, happens to cause a rejection. Finally,

we generate a third potential �ring time, �3. When we sample � Unif(0;��(m)), we

obtain a value falling in the interval corresponding to t2, hence we schedule the �ring

of t2 at time �3. It is then apparent that the expected number or random deviates that

need to be generated is larger when the bounds �t(m;x) for the enabled transitions
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Figure 2: Sampling the NHPP process underlying a FSPN.

are less tight. On the other hand, if the rates of the enabled transitions are a function

of x, but
P

t2E(m;x)�t(m;x) is a known constant independent of x, only two deviates

are needed: the �rst one to decide �1 and the second one to decide which transition to

�re.

� If, instead, the set of enabled transitions can change as x evolves, we also need to

consider an \enabling event" at the time � e when the �rst change in E(m;x) occurs.

The method to compute � e depends on the nature of the dependencies. In principle,

we should know the value of x(� ) over the entire horizon � 2 [0; � f ]. This can still

be accomplished through integration. After (during) integration we need to �nd that

value of � e that �rst satis�es the given condition on the 
uid levels. If there is no

minimum value � e 2 [0; � f ] for which the set of enabled transitions changes, the next

event to schedule is the �ring at time � f . Otherwise, we must schedule an \enabling

event" at time � e.

In either case, if the �ring rates of timed transitions are not dependent on 
uid levels, the

generation of next �ring times is considerably simpli�ed because the machinery of NHPP-
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based generation of random deviates is avoided.

The processing of the scheduled event causes a change of marking, from (m;x) to (m0
;x

0),

where m0 = m if the event was of the enabling type. Then, in marking (m0
;x

0), a �nite

sequence of immediate �rings might take place, just as in ordinary, non-
uid, SPNs, until

the next tangible marking (m00
;x

00) is reached. Thanks to the memoryless property of the

exponential distribution, the evolution of the FSPN from this point on is analogous to

the evolution from the initial marking, that is, we do not need to be concerned about

the \remaining �ring times" of transitions that were already enabled prior to reaching this

marking.

4 Uncoupled behavior

The general behavior just described requires us to solve a system of ordinary di�erential

equations at each step of the simulation. This computation can be quite costly. A restriction

on the type of dependency allows us to uncouple the system, resulting in a set of ordinary

di�erential equations which can be solved independently. This requires that the 
uid rates

incident on q, hence �q(m;x), depend only on (m;xq), not on the 
uid levels in the other

continuous places:

8(m;x); (m;x
0) 2 Ŝ; xq = x

0
q ) �q(m;x) = �q(m;x

0):

As in the general case, we can still distinguish whether the set of enabled transitions can

be a�ected by x or not, and the NHPP random variate generation must be used only if their

�ring rates depend on x.

5 Prede�ned classes of behaviors

For particular cases of uncoupled dependencies, we can even have a built-in closed form

solution, which will avoid the need for numerical integration altogether. One such case is

when, in a given marking (m;x),

dxq(� )

d�
= A(m)xq(� ) +B(m); A(m) 6= 0

whose solution is

xq(� ) = �
B(m)

A(m)
+

 
xq(0) +

B(m)

A(m)

!
e
A(m)�

;
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assuming that xq remains between 0 and bq(m) during [0; � ]. This answers the question of

how much the 
uid level in a place will change during the �ring time � of a timed transition.

Inversely, the time �q when place q reaches a certain 
uid level threshold Lq is given by

�q =

ln

0
BBBB@

Lq +
B(m)

A(m)

xq(0) +
B(m)

A(m)

1
CCCCA

A(m)
;

if this quantity is positive (if it is negative, we can simply de�ne �q = 1, that is, the

threshold Lq cannot be reached in this marking).

If the set of enabled transitions can only change when some place q reaches a threshold

level Lq, then we can simply de�ne the time � e of the next enabling event as

�
e = min

q2PC
f�qg:

When A(m) = 0, the solution is much simpler,

dxq(� )

d�
= B(m) ) xq(� ) = xq(0) +B(m)�;

again assuming that xq remains between 0 and bq(m) during [0; � ]. The time �q when place

q reaches the threshold Lq is then

�q =
Lq � xq(0)

B(m)
;

if this quantity is positive, in�nity otherwise.

6 Piecewise constant behavior

Complete dependency on the marking (m;x) is desirable in principle, but the complication

it entails is often excessive and its full power unneeded. A simpler type of dependency is

obtained by enforcing a discretization on the behavior of the FSPN with respect to the

continuous component x. This can be accomplished by de�ning a set of boolean threshold-

type conditions L = f(r1 �1 l1); : : : ; (rjLj �jLj ljLj)g, where rk 2 P
C is a continuous place,

�k 2 f<;�;=;�; >; 6=g is a comparison operator, and lk : N
jPDj ! R[ f1g is a threshold

dependent on the discrete marking only. Hence, given a marking (m;x), we can de�ne
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the \discretized" marking (m; i) obtained through L, where i 2 f0; 1gjLj, and ik = 1 i�

xrk �k lk(m).

If we force a (for discrete places only), f , g, and � to be de�ned on the discretized

marking (m; i), rather than on (m;x), then the behavior of the FSPN is constant until the

�rst threshold is encountered, or until a �ring occurs.

Hence, we can carry on a traditional discrete-event simulation, where the types of events

that need to be scheduled in the event queue are either transition �rings or the hitting of a

threshold.

Fortunately, there is no need to place the same restriction on the 
uid impulses (a for

continuous places) or w, since the impulses and the weights are always evaluated only at a

speci�c instant in time. Applying the restriction to these quantities as well would prevent us

from modeling useful behaviors, such as emptying a continuous place, or choosing between

two immediate transitions with probability proportional to the level in two continuous places.

7 Examples

We illustrate the power of the formalism with a few examples.

7.1 A queue with impatient customers and breakdowns

Consider a queue with a server subject to breakdowns and repairs. The customers arrive

with a constant rate, and queue in an unbounded waiting room. They are served in �rst-

come-�rst-serve order, but, once their service starts, they can become impatient and leave

before completion, see Fig. 3. Unlike other system with impatient customers, the amount of

time a customer has been in the queue before his service begins does not a�ect his decision

to leave. The arcs from Serving to Busy and from Waiting to Idle are used to count time

into the two places, hence they have 
uid rate one. The arcs from Busy and Idle to Serving

have impulse xBusy and xIdle de�ned on them, respectively. Hence, they are \
ushing" arcs,

they have the e�ect of emptying the two places immediately after the �ring of Serving.

The guard of immediate transition Leave speci�es when the customer at the head of the

queue decides to leave. Various policies can be easily modeled:

� The total amount of time from the moment service began exceeds a certain threshold

MAX. Then, we could de�ne the guard gLeave to be the boolean expression (xBusy +

xIdle = MAX).

10



Arrive

Leave

Customers Up

Down
Fail

Repair

Busy

Idle
Waiting

Serving
xBusy

xIdle

gLeave= ...

Figure 3: The FSPN of a queue with impatient customers and breakdowns.

This policy is representative of situations where, once the server begins operating on

a customer, the operation must complete within a certain time, to avoid spoilage, etc.

� The total amount of time a customer has not received any service from the moment

service began exceeds a certain threshold MAX. Then, gLeave = (xIdle = MAX).

This could represent a similar situation, where, spoilage occurs only when the customer

is not being served.

� A customer has waited for an uninterrupted period of time MAX without receiv-

ing any service. Then, gLeave = (xIdle = MAX), after adding an an impulse arc

aBusy;Repair(m;x) = xBusy, so that place Busy becomes empty after each repair.

This could represent a situation, where, in addition to occurring only when the cus-

tomer is not being served, any spoilage immediately disappears as soon as service

resumes.

� A customer has spent more time waiting for the server to be operational than receiving

service, from the moment service began. Then, gLeave = (xIdle > xBusy).
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A measure of interest is the fraction of jobs that decide to leave:

number of �rings of Leave up to time �

number of �rings of Arrive up to time �

computed over a �nite horizon, or in the limit for � !1.

7.2 A dual-tank processing facility

Consider a processing plant where, during normal operation, a liquid enters a main tank,

One, from an external source with rate 
in, and is used by a processing station, with a

(potential) rate 
out > 
in, (see Fig. 4).

However, the processing station is subject to breakdowns during which it cannot process

the liquid. Interrupting the 
ow from the external source of liquid into the main tank is an

expensive operation, hence, a second additional tank, Two, is present. When the processing

station is down, the liquid is automatically routed to tank Two, which has a maximum

capacity bTwo. Only when the second tank is full, the 
ow from the external source is shut

down. After a repair, the processing can resume and the liquid is routed again from the

external source, which is restarted if it had been shut down, into tank One. In addition, any

liquid in tank Two is pumped into tank One, with rate 
12. If 
in + 
12 > 
out, the level

in tank One will increase while the processing station is working to catch up after a repair.

Since tank One has a maximum capacity, bOne, the 
ow from tank Two to tank One, rather

than the 
ow from the external source, is slowed down when this limit is reached. The guard

(in the FSPN of Fig. 5) gXfer = (xOne < bOne) accomplishes this.

The main reason for having two tanks, instead of a single large one, is e�ciency. As the

liquid needs to be maintained at a given temperature, tank One is constantly heated, while

tank Two is heated only when it contains liquid, i.e., during a breakdown. Indeed, the two

measures we are interested in computing are:

number of �ring of Start up to time �

�
;

the frequency at which the external source needs to go through a start-stop cycle, and

probability that tank Two is not empty at time � ;

again, either for a �nite � or in the limit for � !1.
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Figure 4: A dual-tank processing facility.
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XfermDownγin
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Figure 5: The FSPN of the dual-tank processing facility.

8 Conclusion

In this paper we have extended the power of recently introduced 
uid stochastic Petri nets.

Since equations characterizing the evolution of such FSPNs are a coupled system of partial

di�erential equations, the generation and solution of these equations can become intractable

except for small or very well structured FSPNs. Hence, discrete-event simulation becomes

an important avenue for the solution of FSPNs. Because of mixed, discrete and continuous

state space with heavy interactions between them, simulation also poses some challenges.

13



Some of the challenges are addressed in the paper. Actual implementation (currently in

progress) of an FSPN simulator will undoubtedly reveal other problems.
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